211 research outputs found

    Visual style: Qualitative and context-dependent categorization

    Full text link
    Style is an ordering principle by which to structure artifacts in a design domain. The application of a visual order entails some explicit grouping property that is both cognitively plausible and contextually dependent. Central to cognitive-contextual notions are the type of representation used in analysis and the flexibility to allow semantic interpretation. We present a model of visual style based on the concept of similarity as a qualitative context-dependent categorization. The two core components of the model are semantic feature extraction and self-organizing maps (SOMs). The model proposes a method of categorizing two-dimensional unannotated design diagrams using both low-level geometric and high-level semantic features that are automatically derived from the pictorial content of the design. The operation of the initial model, called Q-SOM, is then extended to include relevance feedback (Q-SOM:RF). The extended model can be seen as a series of sequential processing stages, in which qualitative encoding and feature extraction are followed by iterative recategorization. Categorization is achieved using an unsupervised SOM, and contextual dependencies are integrated via cluster relevance determined by the observer's feedback. The following stages are presented: initial per feature detection and extraction, selection of feature sets corresponding to different spatial ontologies, unsupervised categorization of design diagrams based on appropriate feature subsets, and integration of design context via relevance feedback. From our experiments we compare different outcomes from consecutive stages of the model. The results show that the model provides a cognitively plausible and context-dependent method for characterizing visual style in design. Copyright © 2006 Cambridge University Press

    Comparing entropy measures of idea links in design protocols: Linkography entropy measurement and analysis of differently conditioned design sessions

    Full text link
    This paper explores using Shannon's entropy of information to measure linkographs of 12 design sessions that involved six architects in two different experimental conditions. The aim is to find a quantitative tool to interpret the linkographs. This study examines if the differences in the design processes and the design outcomes can be reflected in the entropic interpretations. The results show that the overall entropy of one design condition is slightly higher than the other. Further, there are indications that the change of entropy might reflect design outcomes

    Functional modelling in evolvable assembly systems

    Get PDF
    The design and reconfiguration of adaptive production systems is a key driver in modern advanced manufacturing. We summarise the use of an ap-proach from the field of functional modelling to capture the function, behaviour, and structure of a system. This model is an integral part of the Evolvable Assembly Systems architecture, allowing the system to adapt its behaviour in response to changing product requirements. The integrated approach is illustrated with an example taken from a real EAS instantiation

    Augmenting the 6-3-5 method with design information

    Get PDF
    This paper describes a comparative study between the 6-3-5 Method and the ICR Grid. The ICR Grid is an evolved variant of 6-3-5 intended to better integrate information into the concept generation process. Unlike a conventional 6-3-5 process where participants continually sketch concepts, using the ICR Grid (the name derived from its Inform, Create, Reflect activities and structured, grid-like output) participants are additionally required to undertake information search tasks, use specific information items for concept development, and reflect on the merit of concepts as the session progresses. The results indicate that although the quantity of concepts was lower, the use of information had a positive effect in a number of areas, principally the quality and variety of output. Although grounded in the area of product development, this research is applicable to any organisation undertaking idea generation and problem solving. As well as providing insights on the transference of information to concepts, it holds additional interest for studies on the composition and use of digital libraries

    On Abduction in Design

    Get PDF
    The mechanism of design reasoning from function to form is addressed by examining the possibility of explaining it as abduction. We propose a new interpretation to some definitions of innovative abduction, to show first that the concept, idea, as the basis for solution must be present in the inference, and second, that the reasoning from function to form is best modeled as a two-step inference, both of the innovative abduction pattern. This double-abductive reasoning is shown also to be the main form of reasoning in the empirically-derived “parameter analysis” method of conceptual design. Finally, the introduction of abduction into design theory is critically assessed, and in so doing, topics for future research are suggested

    On the use of Process Mining and Machine Learning to support decision making in systems design

    Get PDF
    Research on process mining and machine learning techniques has recently received a significant amount of attention by product development and management communities. Indeed, these techniques allow both an automatic process and activity discovery and thus are high added value services that help reusing knowledge to support decision-making. This paper proposes a double layer framework aiming to identify the most significant process patterns to be executed depending on the design context. Simultaneously, it proposes the most significant parameters for each activity of the considered process pattern. The framework is applied on a specific design example and is partially implemented.FUI GONTRAN

    A systematic review of protocol studies on conceptual design cognition

    Get PDF
    This paper reports the first systematic review and synthesis of protocol studies on conceptual design cognition. 47 protocol studies from the domains of architectural design, engineering design, and product de-sign engineering were reviewed towards answering the following re-search question: What is our current understanding of the cognitive processes involved in conceptual design tasks carried out by individual designers? Studies were found to reflect three viewpoints on the cognitive nature of designing, namely: design as search; design as ex-ploration; and design activities. Synthesising the findings of individual studies yielded a classification of cognitive processes involved in con-ceptual design tasks, described in different terms across different viewpoints. Towards a common terminology, these processes are posi-tioned within the cognitive psychology literature, revealing seven basic types of process that appear to be fundamental to designing across all viewpoints: memory (working and long term); visual perception; men-tal imagery; attention; semantic association; cognitive control; and higher-order processes, e.g. analysis and reasoning. The development of common cognitive models of conceptual design, grounded in a sci-entifically rigorous understanding of design cognition, is identified as an avenue for future research
    • …
    corecore